Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action
Details
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups". The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.
Surveys on the current state of invariant theory Includes supplementary material: sn.pub/extras
Inhalt
I. Quotients by Actions of Groups.- II. Torus Actions and Cohomology.- III. The Adjoint Representation and the Adjoint Action.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Gewicht 388g
- Untertitel Encyclopaedia of Mathematical Sciences 131
- Autor A. Bialynicki-Birula , W. M. McGovern , J. Carrell
- Titel Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action
- Veröffentlichung 18.10.2011
- ISBN 3642077455
- Format Kartonierter Einband
- EAN 9783642077456
- Jahr 2011
- Größe H235mm x B155mm x T14mm
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 252
- Auflage Softcover reprint of the original 1st edition 2002
- Lesemotiv Verstehen
- GTIN 09783642077456