Algorithms for Sparsity-Constrained Optimization

CHF 202.75
Auf Lager
SKU
GETHGSN6CSV
Stock 1 Verfügbar
Geliefert zwischen Do., 13.11.2025 und Fr., 14.11.2025

Details

This thesis presents a wholly new technique in the structural analysis of data that uses a 'greedy' algorithm to derive optimal sparse solutions, enabling faster and more accurate results in formerly problematic areas of machine learning and signal processing.


This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a "greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.

Nominated by Carnegie Mellon University as an outstanding Ph.D. thesis Provides an new direction of research into problems of extracting structure from data Advances the science of structure discovery through sparsity Includes supplementary material: sn.pub/extras

Autorentext
Dr. Bahmani completed his thesis at Carnegie Mellon University and is currently employed by the Georgia Institute of Technology.

Inhalt

Introduction.- Preliminaries.- Sparsity-Constrained Optimization.- Background.- 1-bit Compressed Sensing.- Estimation Under Model-Based Sparsity.- Projected Gradient Descent for `p-constrained Least Squares.- Conclusion and Future Work.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319018805
    • Genre Elektrotechnik
    • Auflage 2014
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 132
    • Größe H241mm x B160mm x T12mm
    • Jahr 2013
    • EAN 9783319018805
    • Format Fester Einband
    • ISBN 3319018809
    • Veröffentlichung 18.10.2013
    • Titel Algorithms for Sparsity-Constrained Optimization
    • Autor Sohail Bahmani
    • Untertitel Springer Theses 261
    • Gewicht 371g
    • Herausgeber Springer International Publishing

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470