Algorithms for Sparsity-Constrained Optimization

CHF 202.20
Auf Lager
SKU
KUB34O2N0N3
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This thesis presents a wholly new technique in the structural analysis of data that uses a 'greedy' algorithm to derive optimal sparse solutions, enabling faster and more accurate results in formerly problematic areas of machine learning and signal processing.


This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a "greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.

Nominated by Carnegie Mellon University as an outstanding Ph.D. thesis Provides an new direction of research into problems of extracting structure from data Advances the science of structure discovery through sparsity Includes supplementary material: sn.pub/extras

Autorentext
Dr. Bahmani completed his thesis at Carnegie Mellon University and is currently employed by the Georgia Institute of Technology.

Inhalt

Introduction.- Preliminaries.- Sparsity-Constrained Optimization.- Background.- 1-bit Compressed Sensing.- Estimation Under Model-Based Sparsity.- Projected Gradient Descent for `p-constrained Least Squares.- Conclusion and Future Work.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319377193
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage Softcover reprint of the original 1st edition 2014
    • Sprache Englisch
    • Anzahl Seiten 132
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T8mm
    • Jahr 2016
    • EAN 9783319377193
    • Format Kartonierter Einband
    • ISBN 3319377191
    • Veröffentlichung 23.08.2016
    • Titel Algorithms for Sparsity-Constrained Optimization
    • Autor Sohail Bahmani
    • Untertitel Springer Theses 261
    • Gewicht 213g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470