Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Algorithms for Sparsity-Constrained Optimization
Details
This thesis presents a wholly new technique in the structural analysis of data that uses a 'greedy' algorithm to derive optimal sparse solutions, enabling faster and more accurate results in formerly problematic areas of machine learning and signal processing.
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a "greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.
Nominated by Carnegie Mellon University as an outstanding Ph.D. thesis Provides an new direction of research into problems of extracting structure from data Advances the science of structure discovery through sparsity Includes supplementary material: sn.pub/extras
Autorentext
Dr. Bahmani completed his thesis at Carnegie Mellon University and is currently employed by the Georgia Institute of Technology.
Inhalt
Introduction.- Preliminaries.- Sparsity-Constrained Optimization.- Background.- 1-bit Compressed Sensing.- Estimation Under Model-Based Sparsity.- Projected Gradient Descent for `p-constrained Least Squares.- Conclusion and Future Work.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319377193
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage Softcover reprint of the original 1st edition 2014
- Sprache Englisch
- Anzahl Seiten 132
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T8mm
- Jahr 2016
- EAN 9783319377193
- Format Kartonierter Einband
- ISBN 3319377191
- Veröffentlichung 23.08.2016
- Titel Algorithms for Sparsity-Constrained Optimization
- Autor Sohail Bahmani
- Untertitel Springer Theses 261
- Gewicht 213g