American-style Asian Options Under Jump-diffusion Processes

CHF 47.55
Auf Lager
SKU
FG9JV5NVJ76
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

In this book we derive the analytical solutions to the American-style Asian Options under jump-diffusion processes. The similar problem was studied by Hansen and Jorgensen (2000), but they considered the diffusion case. First of all we transform the problem into one-state variable problem (the dual problem). To this new problem, we find its general analytical solution by using theories from Hansen and Jorgensen (2000), Merton (1976) and H. Pham. Also we derive the analytical solutions to the particular cases, when the average is geometric and arithmetic. In the arithmetic average case, the one-state variable is not a geometric Brownian motion, so we approximate it to a geometric Brownian motion by using the Wilkisson aproximation. At the end of this book we have some numerical results comparing the earlier exercise boundaries in diffusion and jump-diffusion cases.

Autorentext

Stefane Draiva Saize holds Master degree in Mathematics by Uppsala University, Sweden and holds degree in Mathematics by Eduardo Mondlane University, Mozambique, where he works as assistant lecturer since 2008.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659779503
    • Genre Maths
    • Anzahl Seiten 56
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T4mm
    • Jahr 2015
    • EAN 9783659779503
    • Format Kartonierter Einband
    • ISBN 3659779504
    • Veröffentlichung 16.12.2015
    • Titel American-style Asian Options Under Jump-diffusion Processes
    • Autor Stefane Draiva Saize
    • Gewicht 102g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470