An Adaptive Approach for Clustering Incomplete Data Sets

CHF 78.35
Auf Lager
SKU
I0NH9P7RFKK
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The health inequality structure needs to be revealed in order to allow policy makers both globally and locally to find out how health can be promoted using limited resources available to the poor countries of the world. Therefore, the aim of this book is to produce a new algorithm for health inequality analysis that overcomes limitations of the current algorithms used. This algorithm can generally be used to analyse cluster structure within small, sparse and incomplete data sets. The proposed algorithm automatically determines the number of clusters based on well-defined theoretical bases, and also it quantifies relative contribution of individual health indicators to the creation of health inequality structure. This book is intended to be useful for numerical data analysts especially health inequality analysts. Also, it is useful for any one interested in revealing cluster structure within an incomplete data set.

Autorentext

Ahmed R. Abas, PhD: studied Computer Science at Exeter University, UK. Assistant Professor at Zagazig University, Egypt.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783838305790
    • Sprache Englisch
    • Größe H220mm x B150mm x T12mm
    • Jahr 2010
    • EAN 9783838305790
    • Format Kartonierter Einband
    • ISBN 3838305795
    • Veröffentlichung 15.03.2010
    • Titel An Adaptive Approach for Clustering Incomplete Data Sets
    • Autor Ahmed Rafat
    • Untertitel An Application To Health Inequality Analysis
    • Gewicht 304g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 192
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470