Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
An Improved K-means Clustering Algorithm For Data Mining
Details
Data clustering is an unsupervised classification method aims at creating groups of objects, or clusters, in such a way that objects in the same cluster are very similar and objects in different clusters are quite distinct. K-means is an iterative algorithm in which the number of clusters must be determined before the execution.In this book an efficient k-means algorithm is proposed. Since, in each iteration, the k-means algorithm computes the distances between data point and all centers, this is computationally very expensive especially for huge data sets. For each data point, we can keep the distance to the nearest cluster. At the next iteration, we compute the distance to the previous nearest cluster. If the new distance is less than or equal to the previous distance, the point stays in its cluster, and there is no need to compute its distances to the other cluster centers. This saves the time required to compute distances to k 1 clusters. Experimental results show the accuracy and effectiveness of the proposed method.
Autorentext
Neha Aggarwal is a computer professional working as an Assistant Professor in MDU, India. she is B.Tech(CSE), MBA(HR), M.Tech(CSE) with about 8 International journals in her name.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659216657
- Genre Technik
- Sprache Englisch
- Anzahl Seiten 72
- Herausgeber LAP Lambert Academic Publishing
- Größe H220mm x B220mm x T150mm
- Jahr 2012
- EAN 9783659216657
- Format Kartonierter Einband (Kt)
- ISBN 978-3-659-21665-7
- Titel An Improved K-means Clustering Algorithm For Data Mining
- Autor Neha Aggarwal , Kirti Aggarwal