Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
An Introduction to Bayesian Inference, Methods and Computation
Details
These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.
Quickly progresses from fundamental concepts to advanced modelling techniques Provides Stan and Python codes for illustrating concepts Presents exercises with solutions integrated into each chapter
Autorentext
Professor Nick Heard received his PhD degree from the Department of Mathematics at Imperial College London in 2001 and currently holds the position of Chair in Statistics at Imperial. His research interests include developing statistical models for cyber-security applications, finding community structure in large dynamic networks, clustering and changepoint analysis, in each case using computational Bayesian methods.
Inhalt
Uncertainty and Decisions.- Prior and Likelihood Representation.- Graphical Modeling.- Parametric Models.- Computational Inference.- Bayesian Software Packages.- Model choice.- Linear Models.- Nonparametric Models.- Nonparametric Regression.- Clustering and Latent Factor Models.- Conjugate Parametric Models.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030828103
- Lesemotiv Verstehen
- Genre Maths
- Anzahl Seiten 184
- Herausgeber Springer
- Größe H235mm x B155mm x T11mm
- Jahr 2022
- EAN 9783030828103
- Format Kartonierter Einband
- ISBN 3030828107
- Veröffentlichung 19.10.2022
- Titel An Introduction to Bayesian Inference, Methods and Computation
- Autor Nick Heard
- Gewicht 289g
- Sprache Englisch