Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Anomaly Detection Framework for Big Data
Details
Financial service organizations have a number of strategic goals including the acquisition and retention of new and existing customers through the application of various management methodologies. In view of these goals, the institutions generate large volumes of data on profile data, purchase and browsing history and social media data daily. In recent times, businesses have increased the volume of data they process and analyze and this comes at a high computational cost in its analysis. Due to the high increase in the volume of data, most institutions are moving away from the measure of the data volume by volume and considering other parameters. The additional parameters of interest to support evaluation of systems-enabled strategy include variety and velocity. My motivated to design and employ techniques that will stem from both approaches to designing a more hybrid approach which will perform better and also moderate in terms of computational cost.
Autorentext
Cyber Security Studies and Research Laboratory (2015-2016, Meerut, India), Post Graduate Diploma in Cyber Security, University of Rochester/ University of Ghana, USA/ Ghana (Expected may 2016), M.Phil Computer Science Sikkim Manipal University, India, 2011, M.Sc Information Technology Presbyterian Univ Col of Ghana, 2005-2008.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783330043039
- Genre Information Technology
- Anzahl Seiten 136
- Größe H220mm x B150mm x T8mm
- Jahr 2017
- EAN 9783330043039
- Format Kartonierter Einband
- ISBN 978-3-330-04303-9
- Titel Anomaly Detection Framework for Big Data
- Autor Nana Kwame Gyamfi , Ferdinand Katsriku , Anthony Aidoo
- Gewicht 198g
- Herausgeber LAP LAMBERT Academic Publishing
- Sprache Englisch