Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Aperiodic Tiling
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The informal term aperiodic tiling loosely refers to both an aperiodic set of tiles, and to the tilings which such sets admit. Properly speaking, aperiodicity is a property of the set of tiles themselves; any given finite tiling is either periodic or non-periodic. Further confusing the matter is that a given aperiodic set of tiles typically admits infinitely many distinct tilings. One proposed formal definition is that a tiling of the plane is aperiodic if and only if it consists of copies of a finite set of tiles, that themselves only admit non-periodic tilings.
Klappentext
High Quality Content by WIKIPEDIA articles! The informal term aperiodic tiling loosely refers to both an aperiodic set of tiles, and to the tilings which such sets admit. Properly speaking, aperiodicity is a property of the set of tiles themselves; any given finite tiling is either periodic or non-periodic. Further confusing the matter is that a given aperiodic set of tiles typically admits infinitely many distinct tilings. One proposed formal definition is that a tiling of the plane is aperiodic if and only if it consists of copies of a finite set of tiles, that themselves only admit non-periodic tilings.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130316655
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9786130316655
- Format Kartonierter Einband
- ISBN 978-613-0-31665-5
- Titel Aperiodic Tiling
- Untertitel Euclidean Geometry, Tessellation, Penrose Tiling, Undecidable, Domino Problem, Quasicrystal, Dan Shechtman, Hilbert's Eighteenth Problem, Substitution Tiling
- Herausgeber Betascript Publishers
- Anzahl Seiten 92
- Genre Mathematik