Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Application of Holomorphic Functions in Two and Higher Dimensions
Details
This book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail.
All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schrödinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topicsinclude spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity.
Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis.
Presents a unique hypercomplex strategy for the solution of boundary value problems and initial-boundary value problems in higher dimensions Details hypercomplex versions of the Fourier transform and applications Offers new approaches to boundary value problems in elasticity and fluid mechanics from modeling to a solution theory Demonstrates the construction of hyperholomorphic orthogonal polynomial Appell systems in elementary domains in R^3
Autorentext
Klaus Gürlebeck, born 1954, Dr. rer. nat. 1984 Technische Hochschule Karl-Marx-Stadt (Chemnitz), Habilitation 1988 TU Karl-Marx-Stadt (Chemnitz), since 1999 Full Prof. Bauhaus-Universität Weimar; co-editor of several international mathematical journals; interested in quaternionic analysis, discrete function theories and applications to partial differential equations.
Klaus Habetha, born 1932, Dr. rer. nat. 1959 Freie Universität Berlin, Habilitation 1962 Technische Universität Berlin, Prof. Technische Universität Berlin, Full Prof. Universität Dortmund and since 1975 RWTH Aachen, here Rector 1987 - 1997, vice-president of German Rectors Conference; co-editor of the journal Complex Variables and elliptic equations until 2007; interested in function theory for partial differential equation.
Wolfgang Sprößig, born 1946 , Dr. rer. nat. 1974 Technische Hochschule Karl-Marx-Stadt (Chemnitz) Habilitation 1979 TU Chemnitz, Ass. Prof. TU Chemnitz, since 1986 Full Prof. TU Bergakademie Freiberg, Head of the Institute of Applied Analysis 1993 -2012. Since 1998 Editor-in-Chief of the journal Mathematical Methods in the Applied Sciences, co-editor of several international mathematical journals, interested in hypercomplex analysis and its applications.
Inhalt
1.Basic Properties of Holomorphic Functions.- 2.Conformal and Quasi-conformal Mappings.- 3.Function Theoretic Function spaces.- 4.Operator Calculus.- 5.Decompositions.- 6.Some First Order Systems of Partial Differential Equations.- 7.Boundary Value Problems of Second Order Partial Differential Equations.- 8.Some Initial-boundary Value Problems.- 9.Riemann-Hilbert Problems.- 10.Initial Boundary Value Problems on the Sphere.- 11.Fourier Transforms.- Bibliography.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783034809627
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2016
- Anzahl Seiten 408
- Herausgeber Springer Basel
- Größe H241mm x B160mm x T28mm
- Jahr 2016
- EAN 9783034809627
- Format Fester Einband
- ISBN 303480962X
- Veröffentlichung 28.06.2016
- Titel Application of Holomorphic Functions in Two and Higher Dimensions
- Autor Klaus Gürlebeck , Wolfgang Sprößig , Klaus Habetha
- Gewicht 776g
- Sprache Englisch