Applications of Mining Massive Time Series Data

CHF 68.90
Auf Lager
SKU
DPC5DKL663E
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The ability to make predictions about future events is at the heart of much of science; so, it is not surprising that prediction has been a topic of great interest in the data mining community for the last decade. We believe the reason why rule discovery in real-valued time series has failed thus far is because most efforts have more or less indiscriminately applied the ideas of symbolic stream rule discovery to real-valued rule discovery. We feel that the lack of progress in this pursuit can be attributed to two related factors: the lack of effective algorithms for rule discovery in one dimensional time series, resulting in poor-quality and random rules; less accurate classifiers built for multi-dimensional time series in order to make accurate predictions. In this book, we strive to solve these problems and we introduce novel algorithms that allow us to quickly discover high quality rules in very large datasets that accurately predict the occurrence of future events.

Autorentext

Mohammad is currently a Data Scientist at Apple in Cupertino, California. He earned his PhD in CS from the University of California, Riverside in 2015.Dr. Keogh is a professor of CS at UC Riverside. He is ranked among the top research leaders in Data Mining with more than 200 publications.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659761584
    • Genre Maths
    • Anzahl Seiten 124
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T9mm
    • Jahr 2015
    • EAN 9783659761584
    • Format Kartonierter Einband
    • ISBN 3659761583
    • Veröffentlichung 31.08.2015
    • Titel Applications of Mining Massive Time Series Data
    • Autor Mohammad Shokoohi-Yekta , Eamonn Keogh
    • Gewicht 203g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470