Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Applied Bayesian Statistics
Details
Based on the author's extensive experience in both statistics and education, this book imparts the basics of designing and carrying out Bayesian analyses, and interpreting and communicating the results. Demonstrates applications to real-world data.
This book is based on over a dozen years teaching a Bayesian Statistics course. The material presented here has been used by students of different levels and disciplines, including advanced undergraduates studying Mathematics and Statistics and students in graduate programs in Statistics, Biostatistics, Engineering, Economics, Marketing, Pharmacy, and Psychology. The goal of the book is to impart the basics of designing and carrying out Bayesian analyses, and interpreting and communicating the results. In addition, readers will learn to use the predominant software for Bayesian model-fitting, R and OpenBUGS. The practical approach this book takes will help students of all levels to build understanding of the concepts and procedures required to answer real questions by performing Bayesian analysis of real data. Topics covered include comparing and contrasting Bayesian and classical methods, specifying hierarchical models, and assessing Markov chain Monte Carlo output. Kate Cowles taught Suzuki piano for many years before going to graduate school in Biostatistics. Her research areas are Bayesian and computational statistics, with application to environmental science. She is on the faculty of Statistics at The University of Iowa.
Practical approach is good for students of all levels Based on over 12 years teaching Bayesian Statistics R and OpenBUGS are essential to modern Bayesian applications
Autorentext
Kate Cowles taught Suzuki piano for many years before going to graduate school in Biostatistics. Her research areas are Bayesian and computational statistics, with application to environmental science. She is on the faculty of Statistics at The University of Iowa.
Inhalt
What is Bayesian statistics?.- Review of probability.- Introduction to one-parameter models.- Inference for a population proportion.- Special considerations in Bayesian inference.- Other one-parameter models and their conjugate priors.- More realism please: Introduction to multiparameter models.- Fitting more complex Bayesian models: Markov chain Monte Carlo.- Hierarchical models, and more on convergence assessment.- Regression and hierarchical regression models.- Model Comparison, Model Checking, and Hypothesis Testing.- References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781489997043
- Lesemotiv Verstehen
- Genre Maths
- Auflage 2013
- Anzahl Seiten 248
- Herausgeber Springer New York
- Größe H235mm x B155mm x T14mm
- Jahr 2015
- EAN 9781489997043
- Format Kartonierter Einband
- ISBN 1489997040
- Veröffentlichung 23.06.2015
- Titel Applied Bayesian Statistics
- Autor Mary Kathryn Cowles
- Untertitel With R and OpenBUGS Examples
- Gewicht 382g
- Sprache Englisch