Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Applied Machine Learning for Solar Data Processing
Details
It is becoming increasingly important to understand the possible cause and effect relationships between these solar events and features to produce timely and reliable computer-based forecasting of extreme solar events. These forecasts are very important for protecting our technological infra-structures and human life on earth and in space. The need to develop automated tools to process solar data is also increasing because existing space missions are sending huge amounts of data and scientists back on Earth are struggling to keep pace. In this book, we present our research work introducing novel, fully computerised, machine learning-based decision rules and models that can be used within a system design for automated space weather forecasting. The system design in this book consists of three stages: (1) designing computer tools to find the associations among solar events and features (2) applying machine learning algorithms to the associations datasets and (3) studying the evolution patterns of sunspot groups using time-series methods.
Autorentext
Dr. Alomari is an Assistant Prof. of IT in ASU, Jordan. BEng(2005) & MEng(2006) in EE from JUST, Jordan & PhD(2009) from UoB, UK. Dr. Qahwaji is a Reader in Visual Computing in UoB, UK. BSc(1994) & MSc(1997) in EE from UoM, Iraq & PhD(2002) from UoB, UK. Dr. Ipson is a Senior Lecturer in UoB, UK. BSc in Applied Physics & PhD in Nuclear Physics.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 244g
- Untertitel Developing Automated Technologies for Knowledge Extraction and Prediction of Solar Activities using Machine Learning
- Autor Mohammad H. Alomari , Rami S. Qahwaji , Stanley S. Ipson
- Titel Applied Machine Learning for Solar Data Processing
- Veröffentlichung 22.09.2011
- ISBN 3845477768
- Format Kartonierter Einband
- EAN 9783845477763
- Jahr 2011
- Größe H220mm x B150mm x T10mm
- Anzahl Seiten 152
- GTIN 09783845477763