Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Applied Matrix and Tensor Variate Data Analysis
Details
This book provides comprehensive reviews of recent progress in matrix variate and tensor variate data analysis from applied points of view. Matrix and tensor approaches for data analysis are known to be extremely useful for recently emerging complex and high-dimensional data in various applied fields. The reviews contained herein cover recent applications of these methods in psychology (Chap. 1), audio signals (Chap. 2) , image analysis from tensor principal component analysis (Chap. 3), and image analysis from decomposition (Chap. 4), and genetic data (Chap. 5) . Readers will be able to understand the present status of these techniques as applicable to their own fields. In Chapter 5 especially, a theory of tensor normal distributions, which is a basic in statistical inference, is developed, and multi-way regression, classification, clustering, and principal component analysis are exemplified under tensor normal distributions. Chapter 6 treats one-sided tests under matrix variate andtensor variate normal distributions, whose theory under multivariate normal distributions has been a popular topic in statistics since the books of Barlow et al. (1972) and Robertson et al. (1988). Chapters 1, 5, and 6 distinguish this book from ordinary engineering books on these topics.
Reviews applications of matrix and tensor variate data analysis by world-leading researchers in several representative applied fields including, psychology, audio signals, image data and genetics Treats the most important concepts of tensor principal component analysis in details The first book-length review of multivariate statistical inference under tensor normal distributions Includes supplementary material: sn.pub/extras
Inhalt
1 Three-Way Principal Component Analysis with its Applications to Psychology (Kohei Adachi).- 2 Non-negative matrix factorization and its variants for audio signal processing (Hirokazu Kameoka).- 3 Generalized Tensor PCA and its Applications to Image Analysis (Kohei Inoue).- 4 Matrix Factorization for Image Processing (Noboru Murata).- 5 Arrays Normal Model and Incomplete Array Variate Observations (Deniz Akdemir).- 6 One-sided Tests for Matrix Variate Normal Distribution (Manabu Iwasa and Toshio Sakata).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09784431553861
- Editor Toshio Sakata
- Sprache Englisch
- Auflage 1st edition 2016
- Größe H235mm x B155mm x T9mm
- Jahr 2016
- EAN 9784431553861
- Format Kartonierter Einband
- ISBN 443155386X
- Veröffentlichung 10.02.2016
- Titel Applied Matrix and Tensor Variate Data Analysis
- Untertitel SpringerBriefs in Statistics - JSS Research Series in Statistics
- Gewicht 236g
- Herausgeber Springer Japan
- Anzahl Seiten 148
- Lesemotiv Verstehen
- Genre Mathematik