Applied Statistics and Data Science

CHF 242.45
Auf Lager
SKU
F2D1B18V6G5
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025

Details

This proceedings volume features top contributions in modern statistical methods from Statistics 2021 Canada, the 6th Annual Canadian Conference in Applied Statistics, held virtually on July 15-18, 2021. Papers are contributed from established and emerging scholars, covering cutting-edge and contemporary innovative techniques in statistics and data science. Major areas of contribution include Bayesian statistics; computational statistics; data science; semi-parametric regression; and stochastic methods in biology, crop science, ecology and engineering. It will be a valuable edited collection for graduate students, researchers, and practitioners in a wide array of applied statistical and data science methods.


Autorentext
**Dr. Yogendra P. Chaubey is a Professor of Mathematics and Statistics at Concordia University. His research focus is in statistical methodology, mostly concentrated in the area of nonparametric smoothing. Dr. Fassil Nebebe** is a Professor of Supply Chain and Business Technology Management at Concordia University. His research focuses on statistical methodology using resampling techniques, SEM, and predictive analytics.

Dr. Arusharka Sen is an Associate Professor of Mathematics and Statistics at Concordia University. His research focuses on nonparametric function estimation and the analysis of censored data.


Dr. Salim Lahmiri is an Assistant Professor of Supply Chain and Business Technology Management at Concordia University. He serves as associate editor for Expert Systems with Applications; Machine Learning with Applications; Chaos, Solitons & Fractals; Entropy; and Machine Learning & Knowledge Extraction. Dr. Lahmiri's research focuses on artificial intelligence, intelligent systems, data science, predictive analytics, and pattern recognition.

Inhalt

  1. Minimum Profile Hellinger Distance Estimation for Semiparametric Simple Linear Regression Model.- 2. A Spatiotemporal Investigation of the Cod Stock in the Northern Gulf of St-Lawrence.- 3. Modeling Obesity Rate with Spatial Auto-correlation: A Case Study.- 4. Bayesian Inference for Inverse Gaussian Data with Emphasis on the Coefficient of Variation.- 5. Estimation and Testing of a Common Coefficient of Variation from Inverse Gaussian Distributions.- 6. A Markov Model of Polygenic Inheritance.- 7. Bayes Linear Emulation of Simulated Crop Yield.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030861353
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2021
    • Editor Yogendra P. Chaubey, Arusharka Sen, Fassil Nebebe, Salim Lahmiri
    • Anzahl Seiten 176
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T10mm
    • Jahr 2022
    • EAN 9783030861353
    • Format Kartonierter Einband
    • ISBN 303086135X
    • Veröffentlichung 09.12.2022
    • Titel Applied Statistics and Data Science
    • Untertitel Proceedings of Statistics 2021 Canada, Selected Contributions
    • Gewicht 277g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.