Approaches to Probabilistic Model Learning for Mobile Manipulation Robots

CHF 145.55
Auf Lager
SKU
7AA26FRCC86
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

This book presents novel learning techniques that enable mobile platforms with one or more robotic manipulators to autonomously adapt to new or changing situations.

Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context.

Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportation, inspection, and monitoring services. The challenge in these applications is that the robots have to function under changing, real-world conditions, be able to deal with considerable amounts of noise and uncertainty, and operate without the supervision of an expert.

This book presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations. The approaches presented in this book cover the following topics: (1) learning the robot's kinematic structure and properties using actuation and visual feedback, (2) learning about articulated objects in the environment in which the robot is operating, (3) using tactile feedback to augment the visual perception, and (4) learning novel manipulation tasks from human demonstrations.

This book is an ideal resource for postgraduates and researchers working in robotics, computer vision, and artificial intelligence who want to get an overview on one of the following subjects:

· kinematic modeling and learning,

· self-calibration and life-long adaptation,

· tactile sensing and tactile object recognition, and

· imitation learning and programming by demonstration.


Presents recent research in Probabilistic Model Learning for Mobile Manipulation Robots Presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations Describes experiments, which have been conducted to analyze and validate the properties of the developed algorithms

Inhalt
Introduction.- Basics.- Body Schema Learning.- Learning Kinematic Models of Articulated Objects.- Vision-based Perception of Articulated Objects.- Object Recognition using Tactile Sensors.- Object State Estimation using Tactile Sensors.- Learning Manipulation Tasks by Demonstration.- Conclusions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642437144
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage 2013
    • Sprache Englisch
    • Anzahl Seiten 232
    • Herausgeber Springer Berlin Heidelberg
    • Größe H235mm x B155mm x T13mm
    • Jahr 2015
    • EAN 9783642437144
    • Format Kartonierter Einband
    • ISBN 3642437141
    • Veröffentlichung 20.06.2015
    • Titel Approaches to Probabilistic Model Learning for Mobile Manipulation Robots
    • Autor Jürgen Sturm
    • Untertitel Springer Tracts in Advanced Robotics 89
    • Gewicht 359g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470