Approximate Quantum Markov Chains

CHF 72.05
Auf Lager
SKU
PB9IFGDFDO7
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information.

The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple matrix inequality can be extended to more than three matrices. Finally, we carefully discuss the properties of approximate quantum Markov chains and their implications.
The book is aimed to graduate students who want to learn about approximate quantum Markov chains as well as more experienced scientists who want to enter this field. Mathematical majority is necessary, but no prior knowledge of quantum mechanics is required.



This book is mainly written in a noncommutative framework, and focuses on the robustness of the quantum Markov property under approximations. The monograph is clearly written and can serve as a useful introduction to the Markov property in a noncommutative setting. (Nicolas Privault, zbMATH 1407.81002, 2019)

Inhalt
Introduction.- Classical Markov chains.- Quantum Markov chains.- Outline.- Preliminaries.- Notation.- Schatten norms.- Functions on Hermitian operators.- Quantum channels.- Entropy measures.- Background and further reading.- Tools for non-commuting operators.- Pinching.- Complex interpolation theory.- Background and further reading.- Multivariate trace inequalities.- Motivation.- Multivariate Araki-Lieb-Thirring inequality.- Multivariate Golden-Thompson inequality.- Multivariate logarithmic trace inequality.- Background and further reading.- Approximate quantum Markov chains.- Quantum Markov chains.- Sufficient criterion for approximate recoverability.- Necessary criterion for approximate recoverability.- Strengthened entropy inequalities.- Background and further reading.- A A large conditional mutual information does not imply bad recovery.- B Example showing the optimality of the Lmax-term.- C Solutions to exercises.- References.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319787312
    • Lesemotiv Verstehen
    • Genre Physics
    • Auflage 1st ed. 2018
    • Anzahl Seiten 118
    • Herausgeber Springer-Verlag GmbH
    • Größe H235mm x B155mm
    • Jahr 2018
    • EAN 9783319787312
    • Format Kartonierter Einband
    • ISBN 978-3-319-78731-2
    • Veröffentlichung 03.05.2018
    • Titel Approximate Quantum Markov Chains
    • Autor David Sutter
    • Untertitel SpringerBriefs in Mathematical Physics 28
    • Gewicht 209g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470