Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Approximation Theory and Harmonic Analysis on Spheres and Balls
Details
Presenting current results on analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes, this book covers distribution of points on the sphere, the reconstruction algorithm in computerized tomography and more.
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography.
This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
Written by experts in the field Contains up-to-date research in approximation theory and harmonic analysis on balls and spheres Provides useful research material for both experts and advanced graduate students Includes supplementary material: sn.pub/extras
Autorentext
Feng Dai is currently a professor of mathematics at the University of Alberta, and Yuan Xu is currently a professor of mathematics at the University of Oregon.
Inhalt
1 Spherical Harmonics.- 2 Convolution and Spherical Harmonic Expansion.- 3 Littlewood-Paley Theory and Multiplier Theorem.- 4 Approximation on the Sphere.- 5 Weighted Polynomial Inequalities.- 6 Cubature Formulas on Spheres.- 7 Harmonic Analysis Associated to Reflection Groups.- 8 Boundedness of Projection Operator and Cesàro Means.- 9 Projection Operators and Cesàro Means in L^p Spaces.- 10 Weighted Best Approximation by Polynomials.- 11 Harmonic Analysis on the Unit Ball.- 12 Polynomial Approximation on the Unit Ball.- 13 Harmonic Analysis on the Simplex.- 14 Applications.- A Distance, Difference and Integral Formulas.- B Jacobi and Related Orthogonal Polynomials.- References.- Index.- Symbol Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781493901319
- Lesemotiv Verstehen
- Genre Maths
- Anzahl Seiten 460
- Herausgeber Springer
- Größe H235mm x B155mm x T25mm
- Jahr 2015
- EAN 9781493901319
- Format Kartonierter Einband
- ISBN 1493901311
- Veröffentlichung 22.05.2015
- Titel Approximation Theory and Harmonic Analysis on Spheres and Balls
- Autor Feng Dai , Yuan Xu
- Untertitel Springer Monographs in Mathematics
- Gewicht 692g
- Sprache Englisch