Architecture of Computing Systems

CHF 85.15
Auf Lager
SKU
RJT8LQH6R3A
Stock 1 Verfügbar
Geliefert zwischen Fr., 16.01.2026 und Mo., 19.01.2026

Details

This book constitutes the proceedings of the 35 th International Conference on Architecture of Computing Systems, ARCS 2022, held virtually in July 2022.

The 18 full papers in this volume were carefully reviewed and selected from 35 submissions.

ARCS provides a platform covering newly emerging and cross-cutting topics, such as autonomous and ubiquitous systems, reconfigurable computing and acceleration, neural networks and artificial intelligence. The selected papers cover a variety of topics from the ARCS core domains, including energy efficiency, applied machine learning, hardware and software system security, reliable and fault-tolerant systems and organic computing.


Klappentext

Energy Efficiency.- Energy Efficient Frequency Scaling on GPUs in Heterogeneous HPC Systems.- Dual-IS: Instruction Set Modality for Efficient Instruction Level Parallelism.- Pasithea-1: An Energy-Efficient Self-Contained CGRA With RISC-Like ISA.- Applied Machine Learning.- Orchestrated Co-Scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via Machine Learning.- FPGA-based Dynamic Deep Learning Acceleration for Real-time Video Analytics.- Advanced Computing Techniques.- Effects of Approximate Computing on Workload Characteristics.- QPU-System Co-Design for Quantum HPC Accelerators.- Hardware and Software System Security.- Protected Functions: User Space Privileged Function Calls.- Using Look Up Table Content as Signatures to Identify IP Cores in Modern FPGAs.- Hardware Isolation Support for Low-Cost SoC-FPGAs.- Reliable and Fault-tolerant systems.- Memristor based FPGAs: Understanding the Effect of Configuration Memory Faults.- On the Reliability of Real-time Operating System on Embedded Soft Processor for Space Applications.- Special Track: Organic Computing.- NDNET: a Unified Framework for Anomaly and Novelty Detection.- Organic Computing to Improve the Dependability of an Automotive Environment.- A context aware and self-improving monitoring system for field vegetables.- Semi-Model-Based Reinforcement Learning in Organic Computing Systems.- Deep Reinforcement Learning with a Classifier System - First Steps.- GAE-LCT: A run-time GA-based Classifier Evolution Method for Hardware LCT controlled SoC Performance-Power Optimization.


Inhalt
Energy Efficiency.- Energy Efficient Frequency Scaling on GPUs in Heterogeneous HPC Systems.- Dual-IS: Instruction Set Modality for Efficient Instruction Level Parallelism.- Pasithea-1: An Energy-Efficient Self-Contained CGRA With RISC-Like ISA.- Applied Machine Learning.- Orchestrated Co-Scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via Machine Learning.- FPGA-based Dynamic Deep Learning Acceleration for Real-time Video Analytics.- Advanced Computing Techniques.- Effects of Approximate Computing on Workload Characteristics.- QPU-System Co-Design for Quantum HPC Accelerators.- Hardware and Software System Security.- Protected Functions: User Space Privileged Function Calls.- Using Look Up Table Content as Signatures to Identify IP Cores in Modern FPGAs.- Hardware Isolation Support for Low-Cost SoC-FPGAs.- Reliable and Fault-tolerant systems.- Memristor based FPGAs: Understanding the Effect of Configuration Memory Faults.- On the Reliability of Real-time Operating System on Embedded Soft Processor for Space Applications.- Special Track: Organic Computing.- NDNET: a Unified Framework for Anomaly and Novelty Detection.- Organic Computing to Improve the Dependability of an Automotive Environment.- A context aware and self-improving monitoring system for field vegetables.- Semi-Model-Based Reinforcement Learning in Organic Computing Systems.- Deep Reinforcement Learning with a Classifier System First Steps.- GAE-LCT: A run-time GA-based Classifier Evolution Method for Hardware LCT controlled SoC Performance-Power Optimization.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031218668
    • Genre Information Technology
    • Auflage 1st ed. 2022
    • Editor Martin Schulz, Carsten Trinitis, Nikela Papadopoulou, Thilo Pionteck
    • Lesemotiv Verstehen
    • Anzahl Seiten 287
    • Größe H16mm x B155mm x T235mm
    • Jahr 2022
    • EAN 9783031218668
    • Format Kartonierter Einband
    • ISBN 978-3-031-21866-8
    • Titel Architecture of Computing Systems
    • Untertitel 35th International Conference, ARCS 2022, Heilbronn, Germany, September 13-15, 2022, Proceedings
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470