ARMA-CIGMN - A neural network model for time series

CHF 42.50
Auf Lager
SKU
7UE4N3S2IUG
Stock 1 Verfügbar
Shipping Kostenloser Versand ab CHF 50
Geliefert zwischen Mi., 22.10.2025 und Do., 23.10.2025

Details

This book presents a new model of neural network for time series analysis and forecasting: the ARMA-CIGMN (Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) model and its analysis. This model is based on modifications made to a reformulated IGMN, the Classical IGMN (CIGMN). The CIGMN is similar to the original IGMN, but based on a classical statistical approach. The modifications to the IGMN algorithm were made to better fit it to time series. The ARMA-CIGMN model demonstrates good forecasts and the modeling procedure can also be aided by known statistical tools as the autocorrelation (acf) and partial autocorrelation functions (pacf), already used in classical statistical time series modeling and also with the original IGMN algorithm models. The ARMA-CIGMN model was evaluated using known series and simulated data.

Autorentext

João H. F. Flores, Dr: Associate Professor at Instituto de Matemática e Estatística, UFRGS, Porto Alegre, Brazil. Fields of study: time series, neural networks, linear and nonlinear regression.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659798849
    • Genre Maths
    • Anzahl Seiten 128
    • Herausgeber LAP Lambert Academic Publishing
    • Gewicht 209g
    • Größe H220mm x B150mm x T9mm
    • Jahr 2015
    • EAN 9783659798849
    • Format Kartonierter Einband
    • ISBN 3659798843
    • Veröffentlichung 29.11.2015
    • Titel ARMA-CIGMN - A neural network model for time series
    • Autor João Henrique Ferreira Flores , Paulo Martins Engel
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.