Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Aspects of Gravitational Collapse
Details
Here we present a study on the dynamics of plane symmetric gravitational collapse in the presence of charge. We consider both adiabatic as well as non-adiabatic flows of viscous fluid. The Einstein and Maxwell field equations are formulated for general plane symmetric space-time in the interior. Junction conditions between the interior and exterior regions are derived. For the adiabatic case, spacetime for the exterior is taken as plane Reissner-Nordstrom while for the non- adiabatic case, it is described by plane symmetric charged Vaidya spacetime. Using Misner and Sharp formalism, we obtain dynamical equations to investigate the effect of different forces over the rate of collapse. In non-adiabatic case, a dynamical equation is joined with transport equation of heat flux. Finally, a relation between the Weyl tensor and energy density is found. We also studied the final outcome of gravitational collapse resulting from the plane symmetric charged Vaidya spacetime which provides a counter example to the cosmic censorship hypothesis.
Autorentext
Aisha Siddiqa is Currently working as lecturer of mathematics in Wah Engineering College, Wah Cantt, Pakistan.She completed her M.Sc.Mathematics (Gold Medalist)and M.Phil Mathematics from University of the Punjab,Lahore under the supervision of Prof. Dr. Muhammad Sharif (Distinguished National Professor)
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639350173
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2011
- EAN 9783639350173
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-35017-3
- Titel Aspects of Gravitational Collapse
- Autor Aisha Siddiqa , Muhammad Sharif
- Untertitel Dynamics of charged plane symmetric gravitational collapse
- Gewicht 153g
- Herausgeber VDM Verlag
- Anzahl Seiten 92
- Genre Mathematik