Aspherical Space

CHF 43.30
Auf Lager
SKU
JJ7O18EF6TM
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

In topology, a branch of mathematics, an aspherical space is a topological space with all higher homotopy groups equal to {0}. If one works with CW complexes, one can reformulate this condition: an aspherical CW complex is a CW complex whose universal cover is contractible. Indeed, contractibility of a universal cover is the same, by Whitehead's theorem, as asphericality of it. And it is an application of the exact sequence of a fibration that higher homotopy groups of a space and its universal cover are same. (By the same argument, if E is a path-connected space and p: E B is any covering map, then E is aspherical if and only if B is aspherical.) Aspherical spaces are, directly from the definitions, Eilenberg- MacLane spaces. Also directly from the definitions, aspherical spaces are classifying spaces of their fundamental groups.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130618520
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2010
    • EAN 9786130618520
    • Format Fachbuch
    • ISBN 978-613-0-61852-0
    • Titel Aspherical Space
    • Untertitel Topology, Topological space, Homotopy group, CW complex, Covering space, Contractible space, Whitehead theorem, Connected space, Eilenberg-MacLane space, Classifying space, Acyclic space
    • Gewicht 136g
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470