Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Asymptotic methods in mechanics of solids
Details
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russian literature not well known for an English speaking reader makes this a indispensable textbook on the topic.
For students: Numerous exercises with answers and solutions, plots and tables For researchers: Vast references to the relevant Russian literature not well known or unavailable for an English speaking reader For engineers: Numerous problems on deformation, buckling and vibrations of thin-walled structural elements with a comparison of results obtained by asymptotic, analytical and numerical approaches Includes supplementary material: sn.pub/extras
Inhalt
Asymptotic Estimates.- Asymptotic Estimates for Integrals.- Regular Perturbation of ODE's.- Singularly Perturbed Linear ODE's.- Linear ODE's with Turning Points.- Asymptotic Integration of Nonlinear ODE's.- Bibliography.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319386829
- Lesemotiv Verstehen
- Genre Maths
- Auflage Softcover reprint of the original 1st edition 2015
- Anzahl Seiten 348
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T19mm
- Jahr 2016
- EAN 9783319386829
- Format Kartonierter Einband
- ISBN 3319386824
- Veröffentlichung 17.10.2016
- Titel Asymptotic methods in mechanics of solids
- Autor Svetlana M. Bauer , Sergei B. Filippov , Rémi Vaillancourt , Petr E. Tovstik , Andrei L. Smirnov
- Untertitel International Series of Numerical Mathematics 167
- Gewicht 528g
- Sprache Englisch