Asymptotics of Elliptic and Parabolic PDEs

CHF 151.00
Auf Lager
SKU
QOVVKI17IGT
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Fr., 17.10.2025 und Mo., 20.10.2025

Details

This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences. In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory. Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested inderiving solutions to real-world problems from first principles.

Discusses asymptotic formulae in the context of the life sciences Presents applications in molecular and cellular biology, biophysics, as well as computational neuroscience Contains over 100 figures Includes bibliographical notes

Autorentext
David Holcman is an applied mathematician and computational biologist. He developed mathematical modeling and simulations of molecular dynamics in micro-compartments in cell biology using stochastic processes and PDEs. He has derived physical principles of physiology at various scales, including diffusion laws in dendritic spines, potential wells hidden in super-resolution single particle trajectories or first looping time in polymer models. Together with Zeev Schuss, he developed the Narrow escape and Dire strait time theory.
Zeev Schuss is an applied mathematician who significantly shaped the field of modern asymptotics in PDEs with applications to first passage time problems. Methods developed have been applied to various fields, including signal processing, statistical physics, and molecular biophysics.

Inhalt
Part I. Singular Perturbations of Elliptic Boundary Problems.- 1 Second-Order Elliptic Boundary Value Problems with a Small Leading Part.- 2 A Primer of Asymptotics for ODEs.- 3 Singular Perturbations in Higher Dimensions.- 4 Eigenvalues of a Non-self-adjoint Elliptic Operator.- 5 Short-time Asymptotics of the Heat Kernel.- Part II Mixed Boundary Conditions for Elliptic and Parabolic Equations.- 6 The Mixed Boundary Value Problem.- 7 THe Mixed Boundary Value Problem in R2.- 8 Narrow Escape in R3.- 9 Short-time Asymptotics of the Heat Kernel and Extreme Statistics of the NET.- 10 The PoissonNernstPlanck Equations in a Ball.- 11 Reconstruction of Surface Diffusion from Projected Data.- 12 Asymptotic Formulas in Molecular and Cellular Biology.- Bibliography.- Index.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030083199
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 2018
    • Größe H235mm x B155mm x T26mm
    • Jahr 2019
    • EAN 9783030083199
    • Format Kartonierter Einband
    • ISBN 3030083195
    • Veröffentlichung 05.01.2019
    • Titel Asymptotics of Elliptic and Parabolic PDEs
    • Autor Zeev Schuss , David Holcman
    • Untertitel and their Applications in Statistical Physics, Computational Neuroscience, and Biophysics
    • Gewicht 703g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 468
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.