Automatic Tuning of Compilers Using Machine Learning

CHF 72.15
Auf Lager
SKU
RBK1KVMOPBM
Stock 1 Verfügbar
Geliefert zwischen Mo., 19.01.2026 und Di., 20.01.2026

Details

This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques. It demonstrates that not all the optimization passes are suitable for use within an optimization sequence and that, in fact, many of the available passes tend to counteract one another. After providing a comprehensive survey of currently available methodologies, including many experimental comparisons with state-of-the-art compiler frameworks, the book describes new approaches to solving the problem of selecting the best compiler optimizations and the phase-ordering problem, allowing readers to overcome the enormous complexity of choosing the right order of optimizations for each code segment in an application. As such, the book offers a valuable resource for a broad readership, including researchers interested in Computer Architecture, Electronic Design Automation and Machine Learning, as well as computer architects and compiler developers.


Includes supplementary material: sn.pub/extras

Inhalt

Background.- DSE Approach for Compiler Passes.- Addressing the Selection Problem of Passes using ML.- Intermediate Speedup Prediction for the Phase-ordering Problem.- Full-sequence Speedup Prediction for the Phase-ordering Problem.- Concluding Remarks.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319714882
    • Herausgeber Springer-Verlag GmbH
    • Anzahl Seiten 118
    • Lesemotiv Verstehen
    • Genre Technology
    • Auflage 1st ed. 2018
    • Gewicht 230g
    • Untertitel SpringerBriefs in Applied Sciences and Technology - PoliMI SpringerBriefs
    • Größe H236mm x B155mm x T9mm
    • Jahr 2018
    • EAN 9783319714882
    • Format Kartonierter Einband
    • ISBN 978-3-319-71488-2
    • Titel Automatic Tuning of Compilers Using Machine Learning
    • Autor Amir H. Ashouri , Gianluca Palermo , John Cavazos
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470