Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Backward Stochastic Differential Equations
Details
Provides a systematic study from linear equations to fully nonlinear equations
Includes up-to-date developments in the field
A powerful and convenient tool for financial engineering and stochastic optimization
Accessible to graduate students and junior researchers
Provides a systematic study from linear equations to fully nonlinear equations Includes up-to-date developments in the field A powerful and convenient tool for financial engineering and stochastic optimization Accessible to graduate students and junior researchers Includes supplementary material: sn.pub/extras
Autorentext
Jianfeng Zhang is a professor of Mathematics at the University of Southern California, Los Angeles. His research interests include stochastic analysis, backward stochastic differential equations, stochastic numerics, and mathematical finance.
Inhalt
Preliminaries.- Part I The Basic Theory of SDEs and BSDEs.- Basics of Stochastic Calculus.- Stochastic Differential Equations.- Backward Stochastic Differential Equations.- Markov BSDEs and PDEs.- Part II Further Theory of BSDEs.- Reflected BSDEs.- BSDEs with Quadratic Growth in Z.- Forward Backward SDEs.- Part III The Fully Nonlinear Theory of BSDEs.- Stochastic Calculus Under Weak Formulation.- Nonlinear Expectation.- Path Dependent PDEs.- Second Order BSDEs.. Bibliography.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781493972548
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2017
- Anzahl Seiten 404
- Herausgeber Springer New York
- Größe H241mm x B160mm x T28mm
- Jahr 2017
- EAN 9781493972548
- Format Fester Einband
- ISBN 1493972545
- Veröffentlichung 22.08.2017
- Titel Backward Stochastic Differential Equations
- Autor Jianfeng Zhang
- Untertitel From Linear to Fully Nonlinear Theory
- Gewicht 770g
- Sprache Englisch