Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Bases, outils et principes pour l'analyse variationnelle
Details
L'étude mathématique des problèmes d'optimisation, ou de ceux dits variationnels de manière générale (c'est-à-dire, " toute situation où il y a quelque chose à minimiser sous des contraintes "), requiert en préalable qu'on en maîtrise les bases, les outils fondamentaux et quelques principes. Le présent ouvrage est un cours répondant en partie à cette demande, il est principalement destiné à des étudiants de Master en formation, et restreint à l'essentiel. Sont abordés successivement : La semicontinuité inférieure, les topologies faibles, les résultats fondamentaux d'existence en optimisation ; Les conditions d'optimalité approchée ; Des développements sur la projection sur un convexe fermé, notamment sur un cône convexe fermé ; L'analyse convexe dans son rôle opératoire ; Quelques schémas de dualisation dans des problèmes d'optimisation non convexe structurés ; Une introduction aux sous-différentiels généralisés de fonctions non différentiables.
Présentation pédagogique des points essentiels à connaître en débutant des recherches en analyse variationnelle Présentation condensée mais rigoureuse de plusieurs choses en un seul document Cours expérimenté et qui a fait ses preuves sur trois ans Includes supplementary material: sn.pub/extras
Klappentext
L'étude mathématique des problèmes d'optimisation, ou de ceux dits variationnels de manière générale (c'est-à-dire, « toute situation où il y a quelque chose à minimiser sous des contraintes »), requiert en préalable qu'on en maîtrise les bases, les outils fondamentaux et quelques principes. Le présent ouvrage est un cours répondant en partie à cette demande, il est principalement destiné à des étudiants de Master en formation, et restreint à l'essentiel. Sont abordés successivement : La semicontinuité inférieure, les topologies faibles, les résultats fondamentaux d'existence en optimisation ; Les conditions d'optimalité approchée ; Des développements sur la projection sur un convexe fermé, notamment sur un cône convexe fermé ; L'analyse convexe dans son rôle opératoire ; Quelques schémas de dualisation dans des problèmes d'optimisation non convexe structurés ; Une introduction aux sous-différentiels généralisés de fonctions non différentiables.
Weitere Informationen
- Allgemeine Informationen
- Sprache Französisch
- Titel Bases, outils et principes pour l'analyse variationnelle
- Veröffentlichung 08.09.2012
- ISBN 3642307345
- Format Kartonierter Einband
- EAN 9783642307348
- Jahr 2012
- Größe H235mm x B155mm x T11mm
- Autor Jean-Baptiste Hiriart-Urruty
- Untertitel Mathématiques et Applications 70
- Gewicht 295g
- Auflage 2013
- Lesemotiv Verstehen
- Anzahl Seiten 188
- Herausgeber Springer Berlin Heidelberg
- GTIN 09783642307348