Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Bayesian Analysis of Failure Time Data Using P-Splines
Details
Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.
Publication in the field of natural sciences Includes supplementary material: sn.pub/extras
Autorentext
Matthias Kaeding obtained his Master of Science degree at the University of Bamberg in Survey Statistics.
Inhalt
Relative Risk and Log-Location-Scale Family.- Bayesian P-Splines.- Discrete Time Models.- Continuous Time Models.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658083922
- Sprache Englisch
- Auflage 2015
- Größe H210mm x B148mm x T7mm
- Jahr 2015
- EAN 9783658083922
- Format Kartonierter Einband
- ISBN 3658083921
- Veröffentlichung 12.01.2015
- Titel Bayesian Analysis of Failure Time Data Using P-Splines
- Autor Matthias Kaeding
- Untertitel BestMasters
- Gewicht 167g
- Herausgeber Springer Fachmedien Wiesbaden
- Anzahl Seiten 120
- Lesemotiv Verstehen
- Genre Mathematik