Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Bayesian Modeling in Ophthalmology
Details
The use of advanced and newly developed biostatistical methods usually lag behind their initial discovery by a period ranging from a few years to decades. Most clinical research use well-established "classical" statistics to make statistical inference, for example, presence of association. However, when analyzing research data with complex study designs or data structure, simply relying on "classical" statistical methods such as t-tests or standard procedures from generalized linear model may be inappropriate as the data may not satisfy the underlying model's assumptions. This book will introduce the use of modern Bayesian methods to address research questions encountered in different areas of clinical and epidemiological research with a focus on eye diseases. The book will analyze data with questions that may be difficult to address using "classical" statistics. These chapters provide valuable information for epidemiologists, clinicians, health service planners and biostatisticians.
Autorentext
Wan Ling is a biostatistician with research interest in epidemiology, diagnostic medicine, imaging and application of advanced statistical methods to science. She received her PhD from National University of Singapore in 2014 and is a co-author of over 50 scientific publications. Xiang is a postdoctoral research scientist in Columbia University.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659626388
- Sprache Englisch
- Größe H220mm x B150mm x T13mm
- Jahr 2014
- EAN 9783659626388
- Format Kartonierter Einband
- ISBN 3659626384
- Veröffentlichung 31.10.2014
- Titel Bayesian Modeling in Ophthalmology
- Autor Wan Ling Wong , Xiang Li
- Untertitel Application to clinical and epidemiological problems
- Gewicht 322g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 204
- Genre Mathematik