Bayesian Statistics in Actuarial Science

CHF 202.20
Auf Lager
SKU
26VHVBBS834
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The debate between the proponents of "classical" and "Bayesian" statistica} methods continues unabated. It is not the purpose of the text to resolve those issues but rather to demonstrate that within the realm of actuarial science there are a number of problems that are particularly suited for Bayesian analysis. This has been apparent to actuaries for a long time, but the lack of adequate computing power and appropriate algorithms had led to the use of various approximations. The two greatest advantages to the actuary of the Bayesian approach are that the method is independent of the model and that interval estimates are as easy to obtain as point estimates. The former attribute means that once one learns how to analyze one problem, the solution to similar, but more complex, problems will be no more difficult. The second one takes on added significance as the actuary of today is expected to provide evidence concerning the quality of any estimates. While the examples are all actuarial in nature, the methods discussed are applicable to any structured estimation problem. In particular, statisticians will recognize that the basic credibility problem has the same setting as the random effects model from analysis of variance.

Autorentext
STUART A. KLUGMAN, PhD, is Staff Fellow (Education) at the Society of Actuaries and Principal Financial Group Distinguished Professor Emeritus of Actuarial Science at Drake University. Dr. Klugman is a two-time recipient of the Society of Actuaries' Presidential Award.

Inhalt

  1. Introduction.- 2. Bayesian Statistical Analysis.- 3. Computational Aspects of Bayesian Analysis.- 4. Prediction with Parameter Uncertainty.- 5. The Credibility Problem.- 6. The Hierarchical Bayesian Approach.- 7. The Hierarchical Normal Linear Model.- 8. Examples.- 9. Modifications to the Hierarchical Normal Linear Model.- Appendix. Algorithms, Programs, and Data Sets.- A. The Simplex Method of Function Maximization.- B. Adaptive Gaussian Integration.- C. Gauss-Hermite Integration.- D. Polar Method for Generating Normal Deviates.- E. GAUSS Programs.- 1. Simplex Maximization.- 2. Adaptive Gaussian Integration.- 3. Gauss-Hermite Integration.- 4. Monte Carlo Integration.- 5. Tierney-Kadane Integration.- F. Data Sets.- 1. Data Set 1.- 2. Data Sets 24.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09780792392125
    • Sprache Englisch
    • Auflage 1992
    • Größe H241mm x B160mm x T20mm
    • Jahr 1991
    • EAN 9780792392125
    • Format Fester Einband
    • ISBN 0792392124
    • Veröffentlichung 30.11.1991
    • Titel Bayesian Statistics in Actuarial Science
    • Autor Stuart A. Klugman
    • Untertitel with Emphasis on Credibility
    • Gewicht 547g
    • Herausgeber Springer Netherlands
    • Anzahl Seiten 252
    • Lesemotiv Verstehen
    • Genre Betriebswirtschaft

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470