Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Bayesian Tensor Decomposition for Signal Processing and Machine Learning
Details
This book presents recent advances of Bayesian inference in structured tensor decompositions. It explains how Bayesian modeling and inference lead to tuning-free tensor decomposition algorithms, which achieve state-of-the-art performances in many applications, including
- blind source separation;
- social network mining;
- image and video processing;
- array signal processing; and,
wireless communications.
The book begins with an introduction to the general topics of tensors and Bayesian theories. It then discusses probabilistic models of various structured tensor decompositions and their inference algorithms, with applications tailored for each tensor decomposition presented in the corresponding chapters. The book concludes by looking to the future, and areas where this research can be further developed.
Bayesian Tensor Decomposition for Signal Processing and Machine Learning is suitable for postgraduates and researchers with interests in tensor data analytics and Bayesian methods.Studies the latest developments of Bayesian tensor decompositions Provides numerous applications of structured tensor canonical polyadic decompositions Moves through the topics in a well-structured, pedagogical way
Inhalt
Tensor decomposition: Basics, algorithms, and recent advances.- Bayesian learning for sparsity-aware modeling.- Bayesian tensor CPD: Modeling and inference.- Bayesian tensor CPD: Performance and real-world applications.- When stochastic optimization meets VI: Scaling Bayesian CPD to massive data.- Bayesian tensor CPD with nonnegative factors.- Complex-valued CPD, orthogonality constraint and beyond Gaussian noises.- Handling missing value: A case study in direction-of-arrival estimation.- From CPD to other tensor decompositions.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031224409
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage 1st edition 2023
- Sprache Englisch
- Anzahl Seiten 196
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T11mm
- Jahr 2024
- EAN 9783031224409
- Format Kartonierter Einband
- ISBN 303122440X
- Veröffentlichung 17.02.2024
- Titel Bayesian Tensor Decomposition for Signal Processing and Machine Learning
- Autor Lei Cheng , Yik-Chung Wu , Zhongtao Chen
- Untertitel Modeling, Tuning-Free Algorithms, and Applications
- Gewicht 342g