Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Big Data Factories
Details
Provides basic researchers and practitioners direct guidelines and best case scenarios for developing activities related to data factoring
Presents methods for teaching data factoring
Proposes a set of principles for developing data factoring
Autorentext
Sorin Matei is a Professor at Brian Lamb School of Communication at Purdue University. His focus areas are computational social science, collaborative content production, and data storytelling.
Nicolas Jullien is an Associate Professor at the LUSSI Department of Telecom Bretagne. His research interests are in open and online communities.
Sean Patrick Goggins is an Associate Professor at Missouri's iSchool, with courtesy appointments as core faculty in the University of Missouri's Informatics Institute and Department of Computer Science.
Inhalt
Chapter1. Introduction.- Part 1: Theoretical Principles and Approaches to Data Factories.- Chapter2. Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration.- Chapter3. The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science.- Part 2: Theoretical principles and ideas for designing and deploying data factory approaches.- Chapter4. Levels of Trace Data for Social and Behavioral Science Research.- Chapter5. The 10 Adoption Drivers of Open Source Software that Enables e-Research in Data Factories for Open Innovations.- Chapter6. Aligning online social collaboration data around social order: theoretical considerations and measures.- Part 3: Approaches in action through case studies of data based research, best practice scenarios, or educational briefs.- Chapter7. Lessons learned from a decade of FLOSS data collection.- Chapter8. Teaching Students How (NOT) to Lie, Manipulate, and Mislead with Information Visualizations.- Chapter9. Democratizing Data Science: The Community Data Science Workshops and Classes.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319591858
- Genre Information Technology
- Auflage 1st ed. 2017
- Editor Sorin Adam Matei, Nicolas Jullien, Sean P. Goggins
- Lesemotiv Verstehen
- Anzahl Seiten 141
- Größe H235mm x B155mm
- Jahr 2017
- EAN 9783319591858
- Format Fester Einband
- ISBN 978-3-319-59185-8
- Veröffentlichung 07.12.2017
- Titel Big Data Factories
- Untertitel Collaborative Approaches
- Gewicht 3495g
- Herausgeber Springer-Verlag GmbH
- Sprache Englisch