Big Data in Computational Social Science and Humanities
Details
This edited volume focuses on big data implications for computational social science and humanities from management to usage. The first part of the book covers geographic data, text corpus data, and social media data, and exemplifies their concrete applications in a wide range of fields including anthropology, economics, finance, geography, history, linguistics, political science, psychology, public health, and mass communications.
The second part of the book provides a panoramic view of the development of big data in the fields of computational social sciences and humanities. The following questions are addressed: why is there a need for novel data governance for this new type of data?, why is big data important for social scientists?, and how will it revolutionize the way social scientists conduct research?
With the advent of the information age and technologies such as Web 2.0, ubiquitous computing, wearable devices, and the Internet of Things, digital society has fundamentally changed what we now know as "data", the very use of this data, and what we now call "knowledge". Big data has become the standard in social sciences, and has made these sciences more computational. Big Data in Computational Social Science and Humanities will appeal to graduate students and researchers working in the many subfields of the social sciences and humanities.
Provides a comprehensive overview of the use of big data in various disciplines of the social sciences and humanities Includes self-contained and easy-accessible chapters for big data governance Exemplifies the new kind of interdisciplinary collaborations in the big-data era Shows how the digital society brings in methodological innovations to social sciences and humanities
Autorentext
Shu-Heng Chen is a Taiwanese economist and currently a Distinguished Professor at the Department of Economics at National Chengchi University. He is also the founder and Director of the AI-ECON Research Center at the National Chengchi University. His contributions are in the area of computational approaches to understanding economic and finance problems, in particular, the use of heterogeneous agent-based approach and genetic programming in economics. He is considered one of the pioneers in the field of agent-based computational economics and the first to introduce genetic programming to ACE. He takes a biologically-inspired approach in modeling the boundedly rational behavior of agents and is influenced by the work of Herbert A. Simon.
Inhalt
Big Data in Computational Social Sciences and the Humanities: An Introduction.- Part I: Practice.- Application of Citizen Science and Volunteered Geographic Information (VGI): Tourism Development for Rural Communities.- Telling Stories Through R: Geo-temporal Mappings of Epigraphic.- Expressing Dynamic Maps through 17th-Century Taiwan Dutch Manuscripts.- Has Homo economicus Evolved into Homo sapiens from 1992 to 2014?: What Does Corpus Linguistics Say?.- Big Data and FinTech.- Health in Biodiversity-Related Conventions: Analysis of a Multiplex Terminological Network (1973-2016).- How Does Linguistic Complexity in Shakespeare's Plays Relate to the Production History of a Commercial American Theatre?.- Language Communities, Corpora, and Cognition.- From Naive Expectation to Realistic Progress Government Applications of Big Data to Public Opinions Mining.- Understanding the User-Generated: The Construction of the ABC model and the Imagination of Digital Humanities.- Part II: Survey and Challenges.- Big Data Finance and Financial Markets.- Applications of Internet Methods in Psychology.- Spatial Humanities: An Integrated Approach to Spatiotemporal Research.- Cloud Computing in the Social Sciences and Humanities.- Analysis of Social Media Data: An Introduction to the Characteristics and Chronological Process Spatial Humanities.- Big Data and Research Opportunities Using HRAF Databases.- Computational History: From Big Data to Big Simulations.- A Posthumanist Reflection on the Digital Humanities and Social Sciences.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319954646
- Auflage 1st edition 2018
- Editor Shu-Heng Chen
- Sprache Englisch
- Größe H241mm x B160mm x T28mm
- Jahr 2018
- EAN 9783319954646
- Format Fester Einband
- ISBN 3319954644
- Veröffentlichung 29.11.2018
- Titel Big Data in Computational Social Science and Humanities
- Untertitel Computational Social Sciences
- Gewicht 770g
- Herausgeber Springer International Publishing
- Anzahl Seiten 404
- Lesemotiv Verstehen
- Genre Informatik