Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Biologically-Inspired Optimisation Methods
Details
This book covers the latest theories, applications and techniques in Biologically-Inspired Optimisation Methods. Many chapters derive from studies presented at workshops and international conferences on e-Science, Grid Computing and Evolutionary computation.
Humanity has often turned to Nature for inspiration to help it solve its problems. The systems She provides are often based on simple rules and premises, yet are able to adapt to new and complex environments quickly and efficiently. Problems from a range of human endeavours, including, science, engineering and economics, require us to find good quality solutions in exponentially large search spaces, a task that often requires vast amounts computational resources and effort. In this book, the contributing authors solve these problems by modelling aspects of the natural world, from the flocking of birds and fish, the operation of colonies of ants through to chromosome reproduction and beyond. Many of the contributions represent extended studies of work presented at a number of workshops on Biologically-Inspired Optimisation Methods at international conferences on e-Science, Grid Computing, and Evolutionary Computation. A variety of chapters from some of the leading experts in the field present an overview of the state-of-the-art, recent advances in theoretical and practical ideas and techniques, and details of application of these methods to a range of benchmark and real world problems.
Presents recent research in Biologically-inspired Optimisation Methods
Inhalt
Evolution's Niche in Multi-Criterion Problem Solving.- Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization.- Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments.- Dynamic Problems and Nature Inspired Meta-heuristics.- Relaxation Labelling Using Distributed Neural Networks.- Extremal Optimisation for Assignment Type Problems.- Niching for Ant Colony Optimisation.- Using Ant Colony Optimisation to Construct Meander-Line RFID Antennas.- The Radio Network Design Optimization Problem.- Strategies for Decentralised Balancing Power.- An Analysis of Dynamic Mutation Operators for Conformational Sampling.- Evolving Computer Chinese Chess Using Guided Learning.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642101779
- Auflage Softcover reprint of hardcover 1st edition 2009
- Editor Andrew Lewis, Marcus Randall, Sanaz Mostaghim
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T21mm
- Jahr 2010
- EAN 9783642101779
- Format Kartonierter Einband
- ISBN 3642101771
- Veröffentlichung 28.10.2010
- Titel Biologically-Inspired Optimisation Methods
- Untertitel Parallel Algorithms, Systems and Applications
- Gewicht 563g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 372