Boosted Statistical Relational Learners

CHF 67.15
Auf Lager
SKU
C6FNKMJHVF4
Stock 1 Verfügbar
Geliefert zwischen Mo., 19.01.2026 und Di., 20.01.2026

Details

This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.

Includes supplementary material: sn.pub/extras

Inhalt
Introduction.- Statistical Relational Learning.- Boosting (Bi-)Directed Relational Models.- Boosting Undirected Relational Models.- Boosting in the presence of missing data.- Boosting Statistical Relational Learning in Action.- Appendix: Booster System.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319136431
    • Auflage 2014
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T6mm
    • Jahr 2015
    • EAN 9783319136431
    • Format Kartonierter Einband
    • ISBN 3319136437
    • Veröffentlichung 25.03.2015
    • Titel Boosted Statistical Relational Learners
    • Autor Sriraam Natarajan , Jude Shavlik , Tushar Khot , Kristian Kersting
    • Untertitel From Benchmarks to Data-Driven Medicine
    • Gewicht 143g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 84
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470