Breast Cancer Detection Using Combination Of Feature Extraction Models

CHF 41.45
Auf Lager
SKU
1O6TK7FHDB5
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The Chapter 1 discusses about the Breast Cancer and Oveview of the report. The Chapter 2 discusses about the existing works related to detection of breast cancer, Proposed work and System analysis. The Chapter 3 discusses about the enhancement methods used for extraction and feature extraction techniques. The Chapter 4 discusses about the implementation part, which compares the textual features of multiple mammogram images using textual parameters. The proposed system presents intelligibility mammogram enhancement method (IMEM) for obtaining the best quality of mammogram images. Proposed IMEM produces the high quality of mammogram images which are taken as sources of ROI segmentation for attaining of best segmented images. The Chapter 5 discusses about the result analysis classification of mammogram images were performed using feature extraction method . The Chapter 6 ends this book with conclusion followed by references.

Autorentext

Dr. K. Rajendra Prasad, Professeur et Chef, Département CSE. C.Raghavendra, Professeur adjoint, Département CSE. K.Sharanya, Département CSE.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786202076067
    • Sprache Englisch
    • Größe H220mm x B150mm x T5mm
    • Jahr 2018
    • EAN 9786202076067
    • Format Kartonierter Einband (Kt)
    • ISBN 6202076062
    • Veröffentlichung 25.04.2018
    • Titel Breast Cancer Detection Using Combination Of Feature Extraction Models
    • Autor K. Rajendra Prasad , Raghavendra Chilamakur , Sharanya Kolli
    • Gewicht 125g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 72
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470