Bringing Machine Learning to Software-Defined Networks

CHF 69.15
Auf Lager
SKU
9K4DBBIKPFF
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Emerging machine learning techniques bring new opportunities to flexible network control and management. This book focuses on using state-of-the-art machine learning-based approaches to improve the performance of Software-Defined Networking (SDN). It will apply several innovative machine learning methods (e.g., Deep Reinforcement Learning, Multi-Agent Reinforcement Learning, and Graph Neural Network) to traffic engineering and controller load balancing in software-defined wide area networks, as well as flow scheduling, coflow scheduling, and flow migration for network function virtualization in software-defined data center networks. It helps readers reflect on several practical problems of deploying SDN and learn how to solve the problems by taking advantage of existing machine learning techniques. The book elaborates on the formulation of each problem, explains design details for each scheme, and provides solutions by running mathematical optimization processes, conducting simulated experiments, and analyzing the experimental results.

Solves open problems for improving network performance of Software-Defined Networking Broadens the understanding on application of machine learning Includes case studies that illustrate how to use machine learning techniques in computer networks

Autorentext

Dr. Zehua Guo received B.S. degree from Northwestern Polytechnical University, Xi'an, China, M.S. degree from Xidian University, Xi'an, China, and Ph.D. degree from Northwestern Polytechnical University, Xi'an, China. He is an Associate Professor at Beijing Institute of Technology, Beijing, China. He was a Research Fellow at the Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, NY, USA, and a Postdoctoral Research Associate at the Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA. His research interests include programmable networks (e.g., software-defined networking, network function virtualization), machine learning, and network security. He is an Associate Editor of the IEEE Systems Journal, and EURASIP Journal on Wireless Communications and Networking (Springer), an Editor of the KSII Transactions on Internet and Information Systems, and a Guest Editorof the Journal of Parallel and Distributed Computing. He was the Session Chair for the IJCAI 2021, IEEE ICC 2018, and currently serves as the Technical Program Committee Member of Computer Communications, AAAI, IWQoS, ICC, ICCCN, and ICA3PP. He has published 58 papers in prestigious IEEE/ACM/Elsevier journals and conferences, including TON, JSAC, IJCAI, TNSM, Computer Networks, ICDCS, IWQoS, and applied/owned 14 patents. He is a Senior Member of IEEE, China Institute of Communications, and Chinese Institute of Electronics, and a Member of China Computer Federation, ACM, ACM SIGCOMM, and ACM SIGCOMM China.


Inhalt

Chapter 1 Machine Learning for Software-Defined Networking.- Chapter 2 Deep Reinforcement Learning-based Traffic Engineering in SD-WANs.- Chapter 3 Multi-Agent Reinforcement Learning-based Controller Load Balancing in SD-WANs.- Chapter 4 Deep Reinforcement Learning-based Flow Scheduling for Power Efficiency in Data Center Networks.- Chapter 5 Graph Neural Network-based Coflow Scheduling in Data Center Networks.- Chapter 6 Graph Neural Network-based Flow Migration for Network Function Virtualization.- Chapter 7 Conclusion and Future work.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811948732
    • Herausgeber Springer Nature Singapore
    • Anzahl Seiten 84
    • Lesemotiv Verstehen
    • Genre IT Encyclopedias
    • Auflage 1st edition 2022
    • Gewicht 143g
    • Untertitel SpringerBriefs in Computer Science
    • Größe H235mm x B155mm x T6mm
    • Jahr 2022
    • EAN 9789811948732
    • Format Kartonierter Einband
    • ISBN 9811948739
    • Veröffentlichung 06.10.2022
    • Titel Bringing Machine Learning to Software-Defined Networks
    • Autor Zehua Guo
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470