Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Capturing and Tracking Images and Videos on Live Streaming
Details
To capture and track pedestrian or humans in their motion and any moving object is always a challenging task for any system. The system becomes more challenging due to the scope of variation of targets, light conditions, motion of the object. The histogram of oriented gradients (HOG) descriptor is one of the best and most popular descriptors used for pedestrian detection using Harr classifier. The HOG detector is a sliding window algorithm, which means that for any given image a window is moved across at all locations and scales and a descriptor is computed. The window is a pre trained classifier which is computed for the dataset for the descriptor. The classifier used is a linear Support Vector Machine classifier and the descriptor is based on histograms of gradient orientations. Gradient orientations and magnitude are obtained for each pixel from the pre-processed image. The dataset is created and the hit threshold is created for the descriptor for 30 frames per second for the 1000 positive images. The capture window size is reduced to 320 by 240 to get the efficiency and speed which is the limitation of the HOG.
Autorentext
Ausgezeichnet als "Beste Fakultät des Jahres" bei den TechNext India 2018, Jährliche Auszeichnungen für Industrie und Wissenschaft (2018). Forschung zu "Anti-Forensik und Bildverarbeitung", Master in Computertechnik, Referent zu den Themen Big Data Analytics, Blockchain, R-Programmierung.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786202311960
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2018
- EAN 9786202311960
- Format Kartonierter Einband
- ISBN 6202311967
- Veröffentlichung 16.05.2018
- Titel Capturing and Tracking Images and Videos on Live Streaming
- Autor Anuradha Bhatia
- Gewicht 125g
- Herausgeber Scholars' Press
- Anzahl Seiten 72
- Genre Wirtschaft