Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Cauchy Riemann equations
Details
In mathematics, the Cauchy Riemann differential equations in complex analysis, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations that provides a necessary and sufficient condition for a differentiable function to be holomorphic in an open set. This system of equations first appeared in the work of Jean le Rond d'Alembert. Later, Leonhard Euler connected this system to the analytic functions. Cauchy then used these equations to construct his theory of functions. Riemann's dissertation on the theory of functions appeared in 1851.
Klappentext
In mathematics, the Cauchy-Riemann differential equations in complex analysis, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations that provides a necessary and sufficient condition for a differentiable function to be holomorphic in an open set. This system of equations first appeared in the work of Jean le Rond d'Alembert. Later, Leonhard Euler connected this system to the analytic functions. Cauchy then used these equations to construct his theory of functions. Riemann's dissertation on the theory of functions appeared in 1851.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130606749
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2010
- EAN 9786130606749
- Format Fachbuch
- ISBN 978-613-0-60674-9
- Titel Cauchy Riemann equations
- Untertitel Cauchy's integral theorem, List of complex analysis topics, Morera's theorem, Mathematics, Augustin-Louis Cauchy, Bernhard Riemann, Partial differential equation, Necessary and sufficient condition
- Gewicht 201g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 124
- Genre Mathematik