Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Causal Inference in Econometrics
Details
This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume.
To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.
theoretical foundations and applications Written by experts in the field Presents recent research Includes supplementary material: sn.pub/extras
Inhalt
Part I Fundamental Theory.- Part II Applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319801087
- Auflage Softcover reprint of the original 1st edition 2016
- Editor Van-Nam Huynh, Songsak Sriboonchitta, Vladik Kreinovich
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T35mm
- Jahr 2018
- EAN 9783319801087
- Format Kartonierter Einband
- ISBN 3319801082
- Veröffentlichung 30.03.2018
- Titel Causal Inference in Econometrics
- Untertitel Studies in Computational Intelligence 622
- Gewicht 972g
- Herausgeber Springer International Publishing
- Anzahl Seiten 652