Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Characterizing Interdependencies of Multiple Time Series
Details
Presents an approach to characterizing the interdependencies of multivariate time series by means of the basic concept of the one-way effect
Shows how the third-series effect is eliminated with least causal distortion, introducing partial measures of the one-way effect, reciprocity, and association
Illustrates the proposed causal characterization by means of empirical applications to real data sets of the US macroeconomy and Japan's financial economy
Autorentext
Yuzo Hosoya, Professor Emeritus, Tohoku University
Kosuke Oya, Osaka University
Taro Takimoto, Kyushu University
Ryo Kinoshita, Tokyo Keizai University
Inhalt
1: Introduction to statistical causal analysis.- 2: Measures of one-way effect, reciprocity and association.- 3: Partial measures of interdependence.- 4: Inference based on the vector autoregressive and moving average model.- 5: Inference on change in causality measures.- 6: Simulation performance of estimation methods.- 7: Empirical analysis of macroeconomic series.- 8: Empirical analysis of change in causality measures.- 9: Conclusion.- Appendix.- References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811064357
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st ed. 2017
- Anzahl Seiten 133
- Herausgeber Springer-Verlag GmbH
- Größe H235mm x B155mm
- Jahr 2017
- EAN 9789811064357
- Format Kartonierter Einband
- ISBN 978-981-10-6435-7
- Veröffentlichung 08.11.2017
- Titel Characterizing Interdependencies of Multiple Time Series
- Autor Yuzo Hosoya , Kosuke Oya , Taro Takimoto , Ryo Kinoshita
- Untertitel Theory and Applications
- Gewicht 2292g
- Sprache Englisch