Classification Of Brain Tumor Using Deep Learning

CHF 76.65
Auf Lager
SKU
96CJ99V1RS5
Stock 1 Verfügbar
Geliefert zwischen Do., 13.11.2025 und Fr., 14.11.2025

Details

In the growing age of various diseases and specially the Brain Tumor, Automatic differentiation of clinical pictures is not less than any boon. This technology helps in diagnosis, growth observation and also helps to tackle up through the disease. The brain tumor is one of the foremost rigorous diseases in medical science. An efficient and efficient analysis is often a key concern for the radiotherapist within the premature section of tumor growth. Histological grading, supported by a stereotactic diagnostic assay test, is the gold customary and therefore the convention for detective work the grade of a brain tumor. The biopsy procedure needs the operating surgeon to drill a little hole into the so that the tissue is collected. There are several risk factors involving the diagnostic test, as well as haemorrhage from the growth and brain inflicting infection, seizures, severe migraine, stroke, coma, and even death. However, the most concern with the stereotactic biopsy is that it's not 100% accurate which can lead to a heavy diagnostic error followed by wrong clinical management of the disease.

Autorentext

Saluti! Sono Harsh Jindal, e prospero all'incrocio tra curiosità e innovazione. Come appassionato di informatica, ho intrapreso un viaggio pieno di esperienze diverse e di crescita profonda nella ricerca e ho sviluppato più di 5 brevetti e più di 30 articoli di ricerca con 4 premi.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786204982878
    • Sprache Englisch
    • Genre Medical Books
    • Größe H220mm x B150mm x T7mm
    • Jahr 2022
    • EAN 9786204982878
    • Format Kartonierter Einband
    • ISBN 6204982877
    • Veröffentlichung 06.07.2022
    • Titel Classification Of Brain Tumor Using Deep Learning
    • Autor Harsh Jindal , Atul Jha , Vaibhav Singh
    • Untertitel Depth analysis of brain tumors along with deep learning
    • Gewicht 173g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 104

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470