Classification & Optimization to Evaluate the Fitness of an Algorithm

CHF 61.80
Auf Lager
SKU
ST0HC1UF1H5
Stock 1 Verfügbar
Geliefert zwischen Mo., 22.09.2025 und Di., 23.09.2025

Details

In classifying large data set, efficiency and scalability are main issues. Advantages of neural networks include their high tolerance to noisy data, as well as their ability to classify patterns on which they have not been trained. Neural networks are a good choice for most classification and prediction tasks. The necessary complexity of neural networks is one of the most interesting problems in the research. One of the challenges in training MLP is in optimizing weight changes. Advances are introduced in traditional Back Propagation (BP) algorithm, to overcome its limitations. One method is to hybrid GA with BP to optimize weight changes.The objective here is to develop a data classification algorithm that will be used as a general-purpose classifier. To classify any database first, it is required to train the model. The proposed training algorithm used here is a Hybrid BP-GA. After successful training user can give unlabeled data to classify.

Autorentext

Prof. Amit P. Ganatra is concurrently holding Associate Professor (Jan 2010 till date), Headship in Computer Engineering Department at C.S.P.I.T., CHARUSAT and Deanship in Faculty of Technology-CHARUSAT, Gujarat and he is pursuing Ph.D. in Information Fusion (Ensemble) Techniques in Data Warehousing and Data Mining from KSV University, Gandhinagar.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Untertitel An Application of Biologically Inspired Neural Networks for Classification with Evolutionary Algorithm for Optimization
    • Autor Amit Ganatra , Gaurang Panchal , Chintan Gajjar
    • Titel Classification & Optimization to Evaluate the Fitness of an Algorithm
    • Veröffentlichung 06.03.2012
    • ISBN 3848419939
    • Format Kartonierter Einband
    • EAN 9783848419937
    • Jahr 2012
    • Größe H220mm x B150mm x T4mm
    • Gewicht 102g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 56
    • Auflage Aufl.
    • GTIN 09783848419937

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.