Classifying Chest Pathology Images Using Deep Learning Techniques

CHF 47.55
Auf Lager
SKU
JVO4M7BHQ34
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Chest radiographs are the most common examination in radiology in today's era. They are essential and very helpful for the supervision of various diseases associated with high mortality and display a wide range of potential information about various diseases. The most common verdicts in chest X-rays include Tuberculosis, Cardiomegaly & Mediastinum chest diseases. Distinguishing the various chest pathologies is a difficult task even to the human observer and for radiologist. Therefore, there is an interest in developing computer system diagnosis to assist radiologists in reading chest images through machine. The healthy versus pathology detection i.e. Tuberculosis and Cardiomegaly in chest radiography was explored using Laplacian of Gaussian (LoG), Local Binary Patterns (LBP), Speed up Robust Features (SURF) and also used the Bag-of-Visual-Words (BoVW) model using Artificial Neural Network (ANN) & Deep Learning techniques that classifies between healthy vs pathological cases.

Autorentext

Soy el Prof. Vrushali Dhanokar, M.Tech en Ciencias de la Computación e Ingeniería. Trabajando en el campo de la ingeniería y la tecnología. Estudiante entusiasta, investigador y profesor apasionado. Creyente de un "Cualquiera puede ser un profesor o una profesora, pero no todos pueden influenciarte para que te esfuerces por la excelencia y hagas una diferencia en el mundo que te rodea".


Klappentext

Chest radiographs are the most common examination in radiology in today's era. They are essential and very helpful for the supervision of various diseases associated with high mortality and display a wide range of potential information about various diseases. The most common verdicts in chest X-rays include Tuberculosis, Cardiomegaly & Mediastinum chest diseases. Distinguishing the various chest pathologies is a difficult task even to the human observer and for radiologist. Therefore, there is an interest in developing computer system diagnosis to assist radiologists in reading chest images through machine. The healthy versus pathology detection i.e. Tuberculosis and Cardiomegaly in chest radiography was explored using Laplacian of Gaussian (LoG), Local Binary Patterns (LBP), Speed up Robust Features (SURF) and also used the Bag-of-Visual-Words (BoVW) model using Artificial Neural Network (ANN) & Deep Learning techniques that classifies between healthy vs pathological cases.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 119g
    • Untertitel To Develop Computer Based System for Diagnosis of Healthy vs Pathology Chest X-Ray Images to Assist Radiologists
    • Autor Vrushali Dhanokar
    • Titel Classifying Chest Pathology Images Using Deep Learning Techniques
    • Veröffentlichung 05.11.2020
    • ISBN 6203027219
    • Format Kartonierter Einband
    • EAN 9786203027211
    • Jahr 2020
    • Größe H220mm x B150mm x T5mm
    • Anzahl Seiten 68
    • GTIN 09786203027211

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470