Combinatorial Set Theory

CHF 191.40
Auf Lager
SKU
T9D67499JGT
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

This introduction to modern set theory opens the way to advanced current research. Coverage includes the axiom of choice and Ramsey theory, and a detailed explanation of the sophisticated technique of forcing. Offers notes, related results and references.

This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.

Provides a comprehensive introduction to the sophisticated technique of forcing Complete proofs of famous results are given, for instance, Robinson's construction of doubling the unit ball using just five pieces Offers an extensive list of references, historical remarks and related results Includes supplementary material: sn.pub/extras

Inhalt
The Setting.- Overture: Ramsey's Theorem.- The Axioms of Zermelo-Fraenkel Set Theory.- Cardinal Relations in ZF only.- The Axiom of Choice.- How to Make Two Balls from One.- Models of Set Theory with Atoms.- Twelve Cardinals and their Relations.- The Shattering Number Revisited.- Happy Families and their Relatives.- Coda: A Dual Form of Ramsey's Theorem.- The Idea of Forcing.- Martin's Axiom.- The Notion of Forcing.- Models of Finite Fragments of Set Theory.- Proving Unprovability.- Models in which AC Fails.- Combining Forcing Notions.- Models in which p = c.- Properties of Forcing Extensions.- Cohen Forcing Revisited.- Silver-Like Forcing Notions.- Miller Forcing.- Mathias Forcing.- On the Existence of Ramsey Ultrafilters.- Combinatorial Properties of Sets of Partitions.- Suite.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781447121725
    • Sprache Englisch
    • Auflage 2012
    • Größe H235mm x B235mm x T155mm
    • Jahr 2011
    • EAN 9781447121725
    • Format Fester Einband
    • ISBN 978-1-4471-2172-5
    • Titel Combinatorial Set Theory
    • Autor Lorenz J. Halbeisen
    • Untertitel With a Gentle Introduction to Forcing
    • Gewicht 836g
    • Herausgeber Springer London
    • Anzahl Seiten 456
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470