Compact and Fast Machine Learning Accelerator for IoT Devices

CHF 177.25
Auf Lager
SKU
F56RQI85N31
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.



Offers readers a systematic and comprehensive literature review of fast and compact machine learning algorithms on IoT devices Provides various techniques on neural network model optimization such as bit-width truncation and matrix (tensor) decomposition Focuses on machine learning architecture design on both CMOS technology and RRAM technology to provide energy-efficient hardware solutions Illustrates design and analysis for real-life applications such as indoor positioning, energy management and network security in smart buildings

Inhalt
Computing on Edge Devices in Internet-of-things (IoT).- The Rise of Machine Learning in IoT system.- Least-squares-solver for Shadow Neural Network.- Tensor-solver for Deep Neural Network.- Distributed-solver for Networked Neural Network.- Conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811333224
    • Auflage 1st edition 2019
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T15mm
    • Jahr 2018
    • EAN 9789811333224
    • Format Fester Einband
    • ISBN 981133322X
    • Veröffentlichung 18.12.2018
    • Titel Compact and Fast Machine Learning Accelerator for IoT Devices
    • Autor Hao Yu , Hantao Huang
    • Untertitel Computer Architecture and Design Methodologies
    • Gewicht 412g
    • Herausgeber Springer Nature Singapore
    • Anzahl Seiten 160

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470