Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Complex Pattern Mining
Details
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
Presents recent research in complex pattern mining Includes revised selected papers presented at the workshops on "New Frontiers in Mining Complex Patterns Presents new challenges, methods and applications
Inhalt
Ecient Infrequent Pattern Mining using Negative Itemset Tree.- Hierarchical Adversarial Training for Multi-Domain.- Optimizing C-index via Gradient Boosting in Medical Survival Analysis.- Order-preserving Biclustering Based on FCA and Pattern Structures.- A text-based regression approach to predict bug-x time.- A Named Entity Recognition Approach for Albanian Using Deep Learning.- A Latitudinal Study on the Use of Sequential and Concurrency Patterns in Deviance Mining.- Ecient Declarative-based Process Mining using an Enhanced Framework.- Exploiting Pattern Set Dissimilarity for Detecting Changes in Communication Networks.- Classication and Clustering of Emotive Microblogs in Albanian: Two User-Oriented Tasks.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030366162
- Auflage 1st edition 2020
- Editor Annalisa Appice, Michelangelo Ceci, Zbigniew W. Ras, Giuseppe Manco, Elio Masciari, Corrado Loglisci
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H241mm x B160mm x T20mm
- Jahr 2020
- EAN 9783030366162
- Format Fester Einband
- ISBN 3030366162
- Veröffentlichung 15.01.2020
- Titel Complex Pattern Mining
- Untertitel New Challenges, Methods and Applications
- Gewicht 559g
- Herausgeber Springer International Publishing
- Anzahl Seiten 260