Composition series

CHF 36.60
Auf Lager
SKU
KHL1CMK1N71
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.09.2025 und Do., 25.09.2025

Details

High Quality Content by WIKIPEDIA articles! In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many naturally occurring modules are not semisimple, hence cannot be decomposed into a direct sum of simple modules. A composition series of a module M is a finite increasing filtration of M by submodules such that the successive quotients are simple and serves as a replacement of the direct sum decomposition of M into its simple constituents.A composition series may not even exist, and when it does, it need not be unique. Nevertheless, a group of results known under the general name Jordan-Hölder theorem asserts that whenever composition series exist, the isomorphism classes of simple pieces and their multiplicities are uniquely determined. Composition series may thus be used to define invariants of finite groups and Artinian modules.A related but distinct concept is a chief series: a composition series is a maximal subnormal series, while a chief series is a maximal normal series.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130776084
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Genre Mathematik
    • EAN 9786130776084
    • Format Fachbuch
    • Titel Composition series
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 64

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.