Computational Approach to Riemann Surfaces

CHF 72.20
Auf Lager
SKU
Q4B672F9841
Stock 1 Verfügbar
Geliefert zwischen Fr., 19.09.2025 und Mo., 22.09.2025

Details

This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.

Self-contained introduction to the theory of Riemann surfaces Detailed explanation of existing codes with examples Visualization of solutions to integrable partial differential equations and surfaces Includes supplementary material: sn.pub/extras

Inhalt
Introduction to Compact Riemann Surfaces.- Computing with plane algebraic curves and Riemann surfaces: the algorithms of the Maple package algcurves.- Algebraic curves and Riemann surfaces in Matlab.- Computing Poincaré Theta Series for Schottky Groups.- Uniformizing real hyperelliptic M-curves using the Schottky-Klein prime function.- Numerical Schottky Uniformizations: Myrberg's Opening Process.- Period Matrices of Polyhedral Surfaces.- On the spectral theory of the Laplacian on compact polyhedral surfaces of arbitrary genus.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642174124
    • Auflage 2011. Edition
    • Editor Alexander I. Bobenko TU Berlin, Christian Klein
    • Sprache Englisch
    • Genre Mathematik
    • Lesemotiv Verstehen
    • Größe H237mm x B17mm x T155mm
    • Jahr 2011
    • EAN 9783642174124
    • Format Kartonierter Einband
    • ISBN 978-3-642-17412-4
    • Titel Computational Approach to Riemann Surfaces
    • Untertitel Lecture Notes in Mathematics 2013
    • Gewicht 444g
    • Herausgeber Springer-Verlag GmbH
    • Anzahl Seiten 264

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.