Computational Conformal Mapping

CHF 84.75
Auf Lager
SKU
IDO4FGH3UL0
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book evolved out of a graduate course given at the University of New Orleans in 1997. The class consisted of students from applied mathematics andengineering. Theyhadthebackgroundofatleastafirstcourseincomplex analysiswithemphasisonconformalmappingandSchwarz-Christoffeltrans formation, a firstcourse in numerical analysis, and good to excellent working knowledgeofMathematica withadditionalknowledgeofsomeprogramming languages. Sincetheclasshad nobackground inIntegralEquations, thechap tersinvolvingintegralequationformulations werenotcoveredindetail,except for Symm's integral equation which appealed to a subsetofstudents who had some training in boundary element methods. Mathematica was mostly used for computations. In fact, it simplified numerical integration and other oper ations very significantly, which would have otherwise involved programming inFortran, C, orotherlanguageofchoice, ifclassical numericalmethods were attempted. Overview Exact solutions of boundary value problems for simple regions, such as cir cles, squares or annuli, can be determined with relative ease even where the boundaryconditionsarerathercomplicated. Green'sfunctionsforsuchsimple regions are known. However, for regions with complex structure the solution ofa boundary value problem often becomes more difficult, even for a simple problemsuchastheDirichletproblem. Oneapproachtosolvingthesedifficult problems is to conformally transform a given multiply connected region onto Mathematica is a registered trade mark of Wolfram Research, Inc. ix x PREFACE simpler canonical regions. This will, however, result in change not only in the region and the associated boundary conditions but also in the governing differential equation. As compared to the simply connected regions, confor mal mapping ofmultiply connected regions suffers from severe limitations, one of which is the fact that equal connectivity ofregions is not a sufficient condition to effect a reciprocally connected map ofone region onto another.

Includes supplementary material: sn.pub/extras

Klappentext

mapping ofmultiply connected regions suffers from severe limitations, one of which is the fact that equal connectivity ofregions is not a sufficient condition to effect a reciprocally connected map ofone region onto another.


Zusammenfassung

"There are more than 75 case studies of concrete conformal maps and more than 95 end-of-chapter exercises... Accessible to graduate students...it can also serve as a handbook for scientists and engineers who want to work with conformal maps... The book is a welcome addition to the literature. Its ample supply of case studies of conformal maps between given domains and the end-of chapter exercises are particularly attractive and helpful."

--Mathematical Reviews


Inhalt

  1. Introduction.- 1. Basic Concepts.- 2. Conformal Mappings.- 3. SchwarzChristoffel Integrals.- 4. Polynomial Approximations.- 5. Nearly Circular Regions.- 6. Green's Functions.- 7. Integral Equation Methods.- 8. Theodorsen's Integral Equation.- 9. Symm's Integral Equation.- 10. Airfoils.- 11. Doubly Connected Regions.- 12. Singularities.- 13. Multiply Connected Regions.- 14. Grid Generation.- Appendix A. Cauchy P. V. Integrals.- A.1. Numerical Evaluation.- Appendix B. Green's Identities.- Appendix C. RiemannHilbert Problem.- C.1. Homogeneous Hilbert Problem.- C.2. Nonhomogeneous Hilbert Problem.- C.3. RiemannHilbert Problem.- Appendix D. Successive Approximations.- D.1. Tables.- Appendix E. Catalog of Conformal Mappings.- Bibliography 431 Notation.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781461273769
    • Sprache Englisch
    • Auflage 1998
    • Größe H235mm x B155mm x T27mm
    • Jahr 2012
    • EAN 9781461273769
    • Format Kartonierter Einband
    • ISBN 1461273765
    • Veröffentlichung 05.11.2012
    • Titel Computational Conformal Mapping
    • Autor Prem Kythe
    • Gewicht 727g
    • Herausgeber Birkhäuser Boston
    • Anzahl Seiten 484
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470